Total No. of Questions: 8]	26	SEAT No. :	
P-1481		[Total No. of Pa	iges : 5

[6002]-108 S.E. (Civil)

CONCRETE TECHNOLOGY

(2019 Pattern) (Semester - IV) (201010)

[Max. Marks: 70] *Time* : 2½ *Hours*]

Instructions to the candidates.

- Answers Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8 *1*)
- Bold figures to the right indicate full marks. 2)
- Neat diagrams must be drawn wherever, necessary. 3)
- Use of non programmable calculator is allowed in the examination. **4**)
- Your answers will be valued as a whole. 5)
- If necessary assume suitable data and indicate clearly.
- Use of IS codes 10262,456 is not allowed.
- Calculate the compressive strength of following specimen, of concrete. [6]

Sr.		Crushing load in
No.	Specimen and size	kN
i)	Cube 1 : 150 mm × 150 mm × 150mm	600
ii)	Cube 2: 150 mm × 150 mm × 150mm	630
iii)	Cube 3: 150 mm × 150 mm × 150mm	625

Calculate the split tensile strength of following specimen of concrete [6]

Sr.	Specimen and size	Crushing load in
No.		N.
i	Cylinder 1:150mm diameter × 300 mm height	ý jájáo
ii	Cylinder 2: 150mm diameter × 300 mm height	140
iii	Cylinder 3: 150mm diameter × 300 mm height	150
Writ	e short note on :	[6]
i)	Shrinkage of concrete.	
ii)	Creep of Concrete.	
	OR	
	86.	
		<i>P.T.O.</i>

Write short note on: c)

- Shrinkage of concrete. i)
- Creep of Concrete. ii)

Q2)	a)	Enlist non destructive tests for concrete.	Exp	lain core test along with	ı its
		advantages and limitations.			[6]
	b)	Explain the principal of rebound hammer with	th nea	t sketch. Enlist the limitat	ions
		of rebound hammer test.			[6]
	c)	Explain the stress-strain relationship of c	concr	ete with neat sketch.	[6]
Q 3)	a)	Define concrete mix design and state obj	jectiv	es in mix design?	[4]
	b)	Enlist the factors influencing concrete m	ix de	sign and explain any on	e of
		them.			[5]
	c)	Enlist various methods available for con-		•	the
		step by step procedure for concrete mix	desig	gn IS 10262 method.	[8]
		OR			
<i>Q4</i>)	a)	Design a concrete for grade M30 using	g IS c		_
		data		9	[13]
		Parameter	:	Details	
		Grade designation	3	*M30	
	\	Standard deviations	0.	5.00	
		Factor based on the grade)	6.50	
		of concrete, X	:	6.50	
		Factor based on the grade of concrete, X Type of cement	:	OPC 53 grade conform	ning
				to IS 12269	C
		Workability Expression and itions	•	75 mm (slump)	
		Exposure conditions Degree of supervision		Moderate (for plain concretion Good	(ele)
		Maximum cement content		$450 \mathrm{kg/m^3}$	
		Type of aggregate		Angular coarse aggreg	rate
		Specific gravity of cement	•	3.00	gaic
		Specific, gravity of coarse aggregate	•	3.00	
		and fine aggregate		265	
		Water absorption of coarse aggregate		0.50%	
		Water absorption of fine aggregate		1.00%	
				NEW	
		Free surface moisture for coarse aggregate	ر ^۲ ر	Nu	
		Free surface moisture for fine aggregate	: 6	VINII	

Sieve Analysis

Course Aggregate

	Analysi	s of coarse	×			
IS Sieve	aggrega	te fraction	Percenta	ige of differ	ent fractions	Remarks
(mm)	I	II	(P)	II	Combined	Remarks
			(50%)	(50%)	(100%)	
20	100	100	50	50	100	Conforming
10	2.80	78.30	1.4	39.15	40.55	to Table 7
4.75	0	8.70	0	4.35	4.35	of IS 383

Fine aggregate: Conforming to grading Zone II of Table 9 of IS 383

Figure: Relationship between free water cement ratio and 28 days compressive strengths of concrete

Water content per m³ of concrete for 50mm slump:

or a strong and a strong a strong a strong a strong and a strong a	Sr.	Nominal maximum size of aggregate	Maximum water content
---	-----	-----------------------------------	-----------------------

No.	(mm)	(kg/m^3)
i)	10	208
ii)	20	186
iii)	40 0	165

Volume of coarse aggregate per unit volume of total aggregate for water-

cement/water-cementitious material ratio of 0.30:

Sr.	Nominal Maximum	Volume of coarse aggregate per unit volume of
-----	-----------------	---

No.	size of aggregate	total aggregat	e for different zon	nes of fine
	(mm)		aggregate	
	0,00	Zone III	Zone H	Zone I
i)	6.10	0.56	0.54	0.52
ii)	12.5	0.58	0.56	0.54
iii)	20	0.68	0.66	0.64
6	Appı	oximate air conte	ent:	

Sr. Nominal maximum size of Entrapped air, as % of volume of

No.	aggregate (mm)	concrete
i)	10	1.0
ii)	12.5	0.8
iii)	20	0.5

Minimum cement content, maximum W/C and minimum grade of concrete for different exposures with normal weight aggregates of 20mm nominal maximum size :

Sr.	Exposure	Minimum cement	Maximum	Minimum grade of
No.		content (kg/m³)	W/C	concrete
i)	Mild	300	0.55	M20
ii)	Moderate	300	0.50	M25
iii)	Severe	320	0.45	M30
iv)	Very severe	340	0.45	M35
v)	Extreme	360	0.40	M40
b) V	Vhat do you m	ean by :	76.	[4]

		i)	Mean strength &							
		ii)	Variance							
		iii)	Mean strength Variance Standard deviation							
		iv)	Coefficient of variation							
Q 5)	a)	Wri	te short note on [6	[
		i)	Ready mix concrete (RMC)							
		ii)	Under water concreting							
	b)	Wh	at do you meant by roller compacted concrete. Give real lif	e						
		exai	mples/application of roller compacted concrete. [6	[
	c)	Disc	cuss concrete vibrators and compaction equipments. [6	[(
			OR V?							
Q6)	a)	Def	ine dightweight concrete? Classify the various types of lightweigh	ıt						
		cone	concrete by their method of production. [6]							
	b)	Disc	Discuss the self compacting concrete (SCC) with its advantages, material							
		and	and examples of SCC mixes. [6]							
	c)	0 0-								
		i)	Fiber reinforced concrete							
		ii)	Geo-polymer concrete							
Q 7)	a)	Disc	cuss factors affecting the durability of concrete. [6	[[
	b)	Disc	cuss ingredients/factors influencing the permeability of concrete. [5	7						
	c)		te short note on :							
		i)	Attack by sea water on concrete							
		ii)	Carbonation of concrete							
0.0\		****	OR OR							
Q 8)			at are the symptoms and diagnosis of distress of concrete? [5							
	b)	_	lain in detail corrosion monitoring technique for reinforcement an							
	`	-	ventive measures against corrosion. [6							
	c)		at do you meant by retrofitting of concrete? Discuss the use of fibe							
		rein	forced polymer concrete for retrofitting. [6)]						
			X X X							